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Abstract. Nowadays, myoelectric prostheses for replacement 
above elbow are serial mechanisms driven by a DC motor and 
they include only one active articulation for the elbow [1]. 

Parallel mechanisms are more robust and produce a greater 
force than serial mechanisms since every actuator participates 
in the desired movement of the system. Calculating the position 
of every actuator is more complicated than in serial 
mechanisms, and as a result, the mathematical models for 
parallel mechanisms are rather scarce [2]. 

The inverse kinematics model of a 3-degree of freedom parallel 
prosthetic elbow mechanism is reported. The mathematical 
model is required in order to design an above elbow 
myoelectric prosthesis. The prosthesis under design will have 4 
active degrees of freedom and the elbow will employ a parallel 
mechanical system. The flexion of the elbow, the prono-
supination and the humeral rotation are produced by the 
simultaneous participation of 3 actuators. The grasp is 
produced by a fourth independent motor. 

Different derivations of the mathematical model will improve 
the design of the mechanism of the elbow, with savings in 
experimentation. Finally, this inverse kinematics model will be 
employed, using interpolation, in the first control program for 
the final prosthesis. 

Keywords: Myoelectric prosthesis, above elbow, parallel 
robotics, inverse kinematics 

I. Introduction  

Up to date, the clinical prostheses for substitution above 
elbow are impelled with electric motors [1,3]. Also it has 
been found that each active articulation has a motor that 
impels only this specific articulation. So, in prostheses with 
three active articulations while a motor works the other two 
represent a load.  

The section of Bioelectronics of  the Center of Research and 
Advanced Studies of IPN of  Mexico is  working on a 
system that overcomes this problem, and trying to imitate a 
biological human arm have been built electromechanical 
muscles [4] activated by electrical motors that can work 
simultaneously to activate diverse articulations (see fig. 1).  

While in previous systems if a pronation is required it is 
only necessary to activate the supinator motor until the 
desired angle is reached; in the system proposed at our 
institute [4] the coordinated participation of several motors 
is required. This has the benefit that motors that before were 
ballast now are active elements that help to carry out the 
required movement. But, due to the same reason it becomes 
necessary the inclusion of a microcontroller that coordinates 
the opportune participation of each motor.  

 

 
Fig.  1. Prosthetic arm with 4 actuators in parallel. This configuration 
allows three active degrees of freedom in the elbow, active prension of the 
hand and pasive flexión of the wrist.  

A microprocessor will know the position of the 
electromechanical muscles in every moment since they are 
provided with positional encoders. Using the inverse 
kinematics model it is possible to know the position that 
each actuator should have to reach the final position of the 
forearm. Knowing the original and the ending position of 
the forearm it is only necessary to drive the actuators 
interpolating the intermediate positions. Consequently, the 
goal of this paper is to find the inverse kinematics model of 
the prosthetic arm to allow the performing of such a task.  

In the following section it is made a brief description of the 
mechanism of the elbow.  

II. Description 

In figure 2 it is represented, in a single way, the schematized 
mechanism of figure 1. The actuator marked with number 4 
in figure 1 is equivalent to the segment AH. This actuator is 
the responsible of driving the hand, its activation does not 
participate in the position of the elbow, in consequence for 
the elbow analysis this actuator is equivalent to a bone with 
a spherical joint in the proximal side. A change in the length 
of the actuator connected from B to I, and now referred as 
actuator BI, produces an equivalent to humeral rotation. The 
simultaneous and opposite movement of the actuators DE 
and CF produces the prono-supination. The simultaneous 
and identical movement of the same actuators DE and CF 
produces a flexion or extension of the elbow. 

The number adjacent to each joint in figure 2 indicates the 
degrees of freedom for the respective joint. The 
electromechanical muscles are articulated with a cylindrical 
joint, this is, they have two degrees of freedom. In the point 
H there is a revolute joint that turns around u-axis. In the 
point A there is a spherical joint, all other joints are 
universal (2 degrees of freedom). 
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The variables for mechanism in figure 2, their description 
and the respective value are given next. 

J=10. Number of joints in the mechanism, assuming all of 
them are binary. 

N=8. Number of links in the mechanism, including the fixed 
link. 

λ= 6. Degrees of freedom of the workspace  

fi: Degrees of freedom of joint i. 

B: Passive degrees of freedom 

L:  Number of independent loops in the mechanism. 

According to Euler’s equation the mechanism has 

L= j-n +1=10-8+1=3 

This is, there are three independent loops. Employing the 
mobility criterion for loops in parallel mechanisms we have 

1)3(6322 =−−=

−−= �
B

LFfiB λ
 

This means that the system has three active degrees of  
freedom  and one passive (remember that the active grasping 
is not being considered in this analysis) 

The three degrees of freedom belong to flexion-extension of 
elbow, prono-supination and humeral rotation. The passive 
degree of freedom belongs to flexion-extension of the wrist. 

According to the last analysis it is not possible to replace a 
joint using another one with fewer degrees of freedom 
without limiting the movement of the prosthesis. For 
example, in points J, K and L ,it is not possible to replace 
the cylindrical joints, belonging to the actuators, with 
prismatic joints. 

 III. Homogeneous Transformation Matrices 

In figure 2, there is a coordinate system xyz in point A, 
which is fixed to the base of the prosthetic arm, it will be 
called the fixed system. Axes of the fixed system are as 
shown in figure 2. In the other side, in point G there is a 
coordinate system uvw that moves jointly with link HI, this 
will be called as the mobile system. Axes in the mobile 
system have the next orientation. The origin is always on G, 
this is, at mid range on the line HI. The u-axis is parallel to 
line HI and its direction is from H toward I. The w-axis is 
parallel to AH as shown. The v-axis is orthogonal to the 
other two axes and its direction obeys the right hand rule.  

If the orientation and distance between both coordinate 
systems are known, it is possible to build a transformation 
matrix that get the coordinates referred to the fixed system 
of a point situated on the moving system. 

A homogeneous transformation matrix is a 4x4 matrix 
defined to transform a homogeneous position vector from 

the coordinate system B to the coordinate system A as 
follows. 
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The transformation matrix is subdivided in four submatrices, 
the 3x3 submatrix at left and up ARB represents the 
orientation of a mobile coordinate system B with reference 
to a fixed coordinate system A. The 3x1 submatrix at right, 
Aq, indicates the origin of the mobile coordinate system in 
relation to the fixed one. The 1x3 submatrix at down and 
left, γ, represents a perspective transformation and the 
submatrix 1x1 down and right, known as ρ, is the scale 
factor. For this kinematic analysis the perspective matrix γ is 
set to zero and the scale factor matrix ρ is set to 1. 

 

 
Fig. 2. Schematic model of the prosthetic elbow simplified to allow the 
development of the inverse kinematics model of the elbow. The links, 
joints, degrees of freedom of each joint, actuators and fixed and mobile 
coordinate systems are shown.  
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As an example, the transformation matrix for a simple 
rotation about the z-axis is given by 
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and the matrix for a pure translation is given by 
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The sequence of the movements of the elbow is not 
commutable as the matrix multiplication is not commutable. 
As a result, the multiplication must be performed in the 
same order as movements are realized as long as the 
reference system is the fixed system [5]. 

IV. The transformation matrix 

In order to estimate the transformation matrix that relates the 
mobile coordinate system in G with the fixed coordinate 
system in A, there are proposed the following steps: 

First it is assumed that both systems are originally 
coincident in position and orientation and the mobile 
coordinate system will be translated and rotated until it 
reaches the position on G and the required orientation. 

The mobile system is rotated an angle α about the x or u-
axis (in this moment both axes are coincident), necessary to 
match the w-axis with the elevation of link AH. Second, It is 
performed a new rotation of φ about the new v-axis in order 
to match completely the w-axis with the link AH. Third, a 
rotation of θ about the new w-axis is realized in order to 
align the u-axis completely parallel with the link HI. In this 
way, the mobile system has the final orientation, now it is 
necessary to displace the frame to the final position. For 
this, we multiply by a translation matrix that involves a 
displacement d along the new w-axis and a displacement a 
along the u-axis. 

The equation that performs all these rotations and 
translations is the next: 

),(),(),(),(),( auTdwTwRvRxRAA
G ⋅⋅⋅⋅= θφα  

Where R represents a rotation matrix and T represents a 
translation matrix. The result of this multiplication is the 
next:
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V. Computing the length of the 
actuators. Inverse Kinematics 

Using the transformation matrix GAA it can be computed the 
equivalent coordinates in the fixed system xyz of any point 
in the mobile system uvw, for example the point H in figure 
2 has the coordinates Huvw=[a 0 0 1]T then the same point 
has the equivalent coordinates 

uvwA
G

xyz HAH =  

and if α = 0, φ = 0 and θ = 0, then 

Hxyz=[0 0 d 1]T 

These are the coordinates of the same point H seen from the 
fixed frame in A. 

Now we have the tools for computing the length of the 
actuators. To compute the actuator BI length the procedure 
is as follows. First, compute the coordinates of the point I 
respect to fixed system xyz. 

 

Ixyz=GAAIuvw 

obtaining 

Ixyz=[Ix Iy Iz 1]T 

Point B is fixed to the xyz system and it has the next 
coordinates 

Bxyz=[bx by bz 1] 

The actuator BI has a length 

( )2
xyzxyz IBBI −=  

The length of actuator DE will be computed in the same way 

E has the next coordinates 

Euvw=[a 0 ew 1] 

Exyz= GAAEuvw 
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Exyz=[ex ey ez 1]T  

D has fixed coordinates with respect to xyz and does not 
require any transformation. The length of the actuator DE is 
then 

( )2
xyzxyz EDDE −=  

To compute the length of the actuator FC is more 
complicated 

First it is necessary to estimate the unitary vector IBu which 
is parallel to IB 

IB

IB
IBu =  

The point F has the next coordinates 

IBuIFIF uvwuvw +=  

Where IF  is the distance from I to F, where this distance 

is constant. 

Fxyz=
GAAFuvw 

And finally the distance FC is 

( )2
xyzxyz CFFC −=  

where Cxyz is fixed with respect to xyz and its coordinates 
are known. 

Now we know the length of the three actuators, BI, DE and 
FC that determine the position of the prosthetic elbow given 
their angles α, φ and θ. This concludes the inverse 
kinematics model. 

VI. Conclusion 

A kinematic model for a prosthetic elbow has been 
developed. This is important because now, the length of the 
actuators can be known given the flexion, humeral rotation 
and pronosupination angles of the elbow and a 
microprocessor can control the actuators based on this 
information. 

We have verified the efficacy of the model with a Matlab 
program that performs the simulation of the mechanism of 
the elbow. This kinematic model together with the Matlab 
simulation program has helped to find the maximum and 
minimum length as well as the diameter of the actuators.  

The position of the insertion of the actuators in the 
prosthetic arm has been estimated using the kinematic 
model together with the static model. 

In the final version of the prosthesis, a microprocessor will 
control the movements of the prosthesis based on the 
kinematic model. Once the microprocessor knows the 
starting position of the elbow and is instructed with the final 

position information through myoeletric electrodes [6], it 
will compute the intermediate positions to drive the 
actuators. 

 

The homogeneous transformation matrix method widely 
used in serial robotics has been successfully used to resolve 
the kinetic model of a parallel prosthetic elbow mechanism. 
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